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Abstract--Deformation in many crystalline solids can occur by the motion of glissile interfaces. Martensitic 
phase transformations and deformation twinning are the most important such processes, and compete with 
conventional dislocation motion for inducing plastic deformation. The formation and migration of such glissile 
interfaces is important, not least because their motion can be induced on occasion at stresses much lower than 
those needed for dislocation generation and motion. A description of deformation twinning in formal terms using 
a matrix algebraic format will he presented and applied to twinning around microhardness indents in synthetic 
monoclinic ZrO 2 (Baddeleyite) single crystals. 

INTRODUCTION 

PLASTIC deformation of crystalline solids at low tempera- 
tures often occurs by the formation of a new phase or by 
the nucleation and growth of twins, as low temperatures 
can render dislocation generation and motion difficult. 
Such deformation processes involve the formation and 
movement of glissile interfaces. For example, many 
minerals respond to applied stresses by deformation 
twinning, or undergo a martensitic transformation, a 
closely related process. 

It is clearly of interest to predict and understand the 
incidence of deformation twinning in various stress 
fields; in fact, this is readily achieved using a matrix 
algebraic approach (Christian 1982). In this paper, we 
review Christian's work along these lines and apply them 
to twinning in monoclinic zirconia (m-ZrO2 or Badde- 
leyite). We follow Christian's derivations in detail. 

The approach considers the interface as a surface 
defect and represents it by the shape deformation tensor 
E, and its orientation by the unit vector normal n. In the 
absence of lattice dislocation movement, if two orien- 
tations remain in contact at the interface n and this 
interface migrates toward its normal, the inelastic shape 
change must be an invariant plane strain; it may, how- 
ever, incorporate small elastic strains. Figure 1 shows 
that this invariant plane strain can be realized as a 
combination of a simple shear sd and a uniaxial expan- 
sion or contraction ~n normal to this plane. 

Although the overall deformation process is rep- 
resented by E, the actual mechanism is very sensitive to 
the fine-scale atomic structure of the interface. Incoher- 
ent, semi-coherent and coherent interfaces may arise in 
these processes; for the sake of simplicity, we shall 
consider here only the case of the coherent interface. 
For this situation, the invariant plane is termed the 
composition plane and is more commonly referred to as 
g l .  

Deformation twinning involves a homogeneous sim- 
ple shear of a parent lattice to produce a volume of 

material with a different crystallographic orientation. 
Type I twins require that K~ be rational. Twins have a 
characteristic minimum spacing h over which stress 
occurs, as shown in Fig. 1. A twinning mode with a shear 
of magnitude s in the direction d (d is more commonly 
referred to as r/1 in the deformation twinning literature) 
would therefore lead to the following successive dis- 
placements of parallel Kx planes: 

bT = shd, (1) 

where bT is less than an interatomic spacing. 
This displacement appears as a mistake in the stacking 

sequence along n and may remain as a single-layer, 
metastable stacking fault. Any type I twin may thus be 
described as an array of successive stacking faults. The 
edge of any fault of finite thickness may be thought of as 
a glissile partial dislocation with Burgers vector, bT. The 
passage of dislocations of this type through successive K1 
layers will lead to the growth of the twin; again, this 
growth is in the direction of n, the normal to the twin 
plane. This partial dislocation has been termed a twin- 
ning dislocation and has been discussed elsewhere 
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Fig. I. Schematic diagram of a general invariant plane strain defor- 

mation. The ~ term is zero for deformation twinning. 

1241 



1242 R . C .  FIRST and A. H. HEUER 

(Frank & Van der Merwe 1949). An interface containing 
a partial dislocation has associated with it a long-range 
stress field, whereas the purely coherent  K1 interface 
does not. The twinning dislocation will consequently 
lead to a step in the interface. 

CHARACTERISTICS OF INVARIANT PLANE- 
STRAIN DEFORMATION 

The invariant plane strain shown in Fig. 1 is rep- 
resented by the matrix 

E = I + sdn' (2) 

for the case of deformation twinning (Christian 1982). 
Here ,  I is the unit matrix with components 61, d, is a 
column matrix formed from the contravariant (direct 
lattice) components d i of the unit vector d, and n' is the 
unit normal to the variant plane. We shall adhere with 
Christian's (1975) notation and also use an orthonormal 
coordinate system and the standard matrix notation, 
where u' and S' represent the transposes of the 3 × 1 and 
3 × 3 matrices u and S, respectively, S -1 is the matrix 
reciprocal to S and the deformation tensor S converts a 
vector u into a new vector S u and a plane normal h' into 
a new normal h' S -1. 

The inverse, or reverse, deformation process is also an 
invariant plane strain and is represented by 

E -1 = I - fdn ' ,  (3) 

where f = s. All planes that are parallel to the zone axis d 
have normals which are invariant. 

The only vectors which are invariant are contained in 
the composition plane n, but there is a second plane 
which remains undistorted during deformation twin- 
ning. Similarly, there is a second zone axis of undistorted 
plane normals. These are typically referred to as K2 and 
r/2, respectively, but will be termed fi and ff here for 
consistency; they are represented as follows: 

fi = (4 + 4sn'd + s2)-l/2(2d + sn) (4) 

and 

ff = (4 - 4fn'd + f z )  -1/2(2 n - f d ) .  (5) 

The vectors n, fi, d and d all lie in the plane S which is 
termed the plane of shear, as shown in Fig. 2. A rotation 
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Fig. 2. Crystallographic relations for deformation twinning. S, the 
plane of shear, is the plane of the paper and contains n, fi, d and d. 

about the normal to S through an angle 0 will restore fi 
and a to their original positions. It follows that 

cos 0 = cos 2q~ = 1 - ½s 2 cos2q~ (6) 

which defines 0 in terms of the original parameter  s. The 
deformation E = RE represents the same invariant plane 
strain that was considered on the composition plane n. 
The roles of fi and a are now analogous to those of n and 
d, respectively. It follows that, since deformation twin- 
ning is a simple-shear process, equation (6) may be 
rewritten as 

cos 0 = (4 - s 2) (4 + s 2)-1; tan q~ = ½s. (7) 

As many minerals have several twin systems which 
can be activated, it is often useful to be able to predict 
which system may be active under a given set of experi- 
mental conditions. For this, it is useful to first consider 
the strain produced by deformation twinning. The shape 
deformation tensor E will produce a net expansion or 
contraction which can be derived as follows. A general 
unit vector x is transformed into x + (sd) n'x. If we 
define Xo as the angle between x and the invariant plane, 
this can be rewritten as x + (sd)sin Xo. The square of the 
new length becomes (1 + 2s sin ZoCOS 2o + s 2 sin 2 Zo), as 
the square of the initial length x is x 'x = 1; 2o is the initial 
angle between x and d. For a certain orientation defined 
by Zo and ;to, the ratio of the final and initial lengths 
along the axis of orientation is 

--/= {1 + 2s sin Zo COS )t o + $2 sin2 Zo}l/2 (8) 
lo 

and the strain e is Al/lo. Equation (8) represents the 
fractional change in length during uniaxial tension or 
compression of a sample which is totally transformed 
into its twin. This is a generalization of the case first put 
forth by Schmid & Boas (1950) for a simple-shear 
process, which allows for both twinning and slip. The 
above derivation requires that the ends of the specimen 
remain in alignment; in practice, the specimen ends will 
bend to accommodate the slight change in orientation 
and are not considered in this treatment.  Furthermore,  
in many experimental tension or compression setups, 
the ends of the sample are fixed by the experimental 
equipment; different expressions are needed to treat the 
strains involved in this situation and are not considered 
here. 

Equation (8) indicates that a specimen will increase in 
length if the following criterion is met 

cos)to > -½s. (9) 
sin Zo 

Comparison with equation (4) indicates that this re- 
quires the projection of x onto S to lie within the region 
Q O R  in Fig. 2. If a specimen orientation defined by the 
vector x (x being the specimen crystallographic axis 
which coincides with the experimental compression or 
tension axis) is such that its projection lies within the 
region POR in Fig. 2, twinning of such samples will lead 
to a decrease in sample length. Some of these vectors 
(those within ~ of n) will initially decrease in length and 
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then increase. The overall condition for an increase in 
specimen length is 

cos ;to > 0. (10) 
sin Zo 

If s 2 is small in comparison with s, equation (8) may be 
simplified to give e as follows 

Al 
e = ~ -~ s sin Zo cos ;t o. (11) 

It follows that, for a certain orientation, the twin system 
which maximizes the change in length along the tension- 
compression axis should be that system for which the 
twinning Schmid factor (i.e. sin Zo cos ;to) is the greatest. 
In other words, the maximum useful work that can be 
done in a given stress field will be by operation of that 
system which has the largest Schmid factor. 

EXPERIMENTS 

Single crystals of flux-grown m-ZrO 2 were used to 
study deformation at room temperature. Calculations of 
Schmid factors were performed to predict which twin 
system(s) might be activated during Vickers diamond 
indentation experiments; samples containing vicinal 
(100) growth planes were ground and polished to a 1/~m 
finish using diamond paste. A Vickers microindenter 
(4.9 N) was used to introduce localized deformation into 
the (100) sample surface. 

Optical microscopy was used to observe the macro- 
scopic deformation associated with the indents, while 
transmission electron microscopy (TEM) was used to 
analyze the microscopic deformation mechanisms in the 
deformed region surrounding the indent. 

CRYSTALLOGRAPHY OF BADDELEYITE 
(m-ZrO 2) 

Baddeleyite (m-ZrO2) (Fig. 3) has the space group P 
2Jc; its unit cell parameters are as follows: a = 0.515 nm, 
b = 0.520 nm, c = 0.532 nm and fl = 99.38 °. 
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Fig. 3. Schematic diagram of the m-ZrO 2 crystal structure. 

Table 1. Twinning elements for monoclinic zirconia, m-ZrO2 (Bis- 
choff & Riihle 1983) 

Kl rh K2 q2 s 

100 001 001 100 0.328 
110 118 1125 110 0.228 
110 118 1125 110 0.228 
011 251T 81T 0T1 0.228 
011 251--i- 81--1 011 0.228 
001 100 100 001 0.328 

Monoclinic ZrO 2 twins according to the several sets of 
twinning elements listed in Table 1 (Bischoff & Riihle 
1983); the most common system involves (100), while 
twinning on {110} was most prevalent during these 
indentation studies. The twinning elements listed for all 
the twin systems in Table 1 are plotted in the (100) 
stereographic projection shown in Fig. 4. The geometry 
of the {110} twin elements in relation to the m-ZrO2 unit 
cell is depicted in Fig. 5. Here, the (100) indentation 
plane is in the plane of the paper. 

RESULTS 

The stress field associated with the diamond indenter 
is much more complex than the situation encountered in 
a simple compression or tensile experiment (Marshall & 
Lawn 1979, Chiang et al. 1982), and calculation of 
Schmid factors for a given twinning law is complicated. 
McColm (1990, p. 111) has treated a simplified case and 
modelled the indenter geometry as a long, flat punch. 
While this approach gives an indication of the shear 
stress involved in indentation, it does not allow a ready 
comparison of Schmid factors for random orientations 
compared to specific twins around the indenter. How- 
ever, a simple, more general approach can be used, 
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Fig. 4. (100) stereographic projection indicating the twinning ele- 
ments known for m-ZrO2. 
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Fig .  5.  E l e m e n t s  o f  t w i n n i n g  f o r  t h e  ( 1 1 0 )  t w i n  s y s t e m  f o r  m - Z r O  2. 

which only assumes that there is a state of radial com- 
pression and tangential tension around the indent. Com- 
pression axes are thus assumed to emanate radially from 
the indent, and are further contained within the surface. 
Schmid factors can then be calculated for a given set of 
twin elements and the assumed compression axis, given 
that the sample surface is (100). 

As indentations were made on the (100) plane, 
Schmid factors for the twinning elements of Table 1 have 
been tabulated for a number of possible compression 
axes contained within the (100) plane. All Schmid fac- 
tors for the K 1 = (100) system are zero, as the angle 
between the normal to K 1 and any of the possible 
compression axes is 90 °. For the systems with K 1 = 
(001), (011) and (0]-1), the Schmid factors are very 
small, the largest being <0.2 and only occurring for a 
few orientations. 

The systems with K~ = (110) and (11-0) have the 
largest Schmid factors for most compression axes in the 
(100) plane; the calculations for the (110) system are 
shown in Fig. 6 (the values for the (1]-0) system are 
similar, as the two sets of twin elements are related by 
symmetry). The Schmid factors appear to be largest for 
the various [011] directions and are also large for the 
many (021) and (012) directions. Note that only [hkl] and 

Schmid Factors for (II0) Twin System 
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Fig. 6. Schmid factors for the (110) twin system for m-ZrOe. Schmid 
factors for the (1i0) twin system are equivalent, as they are related by 

symmetry. 

[h-kl] are equivalent by symmetry in P 21/c monoclinic 
crystals. This figure also reveals very low or zero Schmid 
factors for the [001] and [010] compression axes. 

Figure 7(a) shows an array of indents in a Nomarski- 
contrast optical micrograph (more details of these ex- 
periments can be found in First & Heuer (1992)). Pro- 
fuse deformation extends into the [001] direction while 
virtually no deformation occurs in the opposite or per- 
pendicular directions. TEM investigation showed the 
primary deformation mechanism was {110} twinning. 
Twinning on (001) was also found around these indents, 
but to a much lesser extent. It should be noted that this 
deformation morphology was independent of the 
indenter orientation. 

Cracking is also associated with these indents and is 
shown in the normal incidence, reflected light micro- 
graph in Fig. 7(b). A long crack follows the twinned 
region along [001] and several small cracks extend from 
the indent along [010] and [010]. 

DISCUSSION 

The Schmid factor calculations discussed earlier 
appear to be in good agreement with the observed 
twinning modes in our experiments. As { 110} twins have 
large Schmid factors for many compression axes in the 
(100) plane, {110} twinning is the primary deformation 
mechanism. (001) twins are also found in the defor- 
mation region around the indent, but have much lower 
Schmid factors for many orientations. These twins may 
form because of their large magnitude of shear; (001) 
and (100) twin systems have s = 0.328, whereas all other 
systems have s -- 0.228. 

The asymmetry of the deformation region is directly 
related to the twinning elements and the direction of 
shear. The sense of shear is such that the direction of tit 
lies near [001], as does r/l for the (1]-0) system. The 
Schmid factor calculations indicate a symmetrical stress 
state around the indentation; however, as twinning 
depends upon the crystallography of the material, as 
well as the possible partial dislocations that can be 
produced, the symmetry of the indenter stress field will 
not necessarily produce symmetrical twinning behavior. 
The dislocations present around these indents have not 
yet been analyzed; these results would help to explain 
this asymmetrical behavior observed here. Asymmetric 
behavior is seen in similar identation experiments per- 
formed on sapphire, where rhombohedral twins are 
generated on only one side of an indent (B. Farber 
personal communication, 1992). In sapphire, the reason 
for the asymmetry lies in the difference in anion stacking 
along opposite directions in the crystal. 

The Schmid factor calculations may also give insight 
into the cracking associated with these indents. In prin- 
ciple, cracks may emanate from the indent radially in 
any direction, given the assumed radial compression and 
tangential tension at any point around the indent. The 
tensile stresses can hence act to form and propagate a 
crack if other deformation mechanisms are unavailable 



D e f o r m a t i o n  t w i n n i n g  in m o n o c l i n i c  z i r con ia  

Fig. 7. Nomarski-contrast optical micrograph showing the profuse deformation twinning in m-ZrO 2 associated with room 
temperature 4.9 N Vickers indents on polished (100) surfaces. (b) Normal incidence, reflected light optical micrograph 

showing the cracking associated with the indents in (a). 
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to accommodate the applied stress. Typically, in poly- 
crystalline materials, cracks will emanate from the cor- 
ners of the indent due to the stress field associated with 
the indenter. In single crystals, preferential cracking will 
often occur along certain crystallographic directions. 
Cracks associated with these indents are evident along 
the [001] and [010] directions. These directions corre- 
spond to Schmid factors of 0 to 0.086 for the {110} twin 
system. These low Schmid factors indicate that twin 
formation due to compression along these axes is unfa- 
vorable, and that cracking takes place instead. 

It should, again, be emphasized that, although this 
treatment suggests a comparison between the Schmid 
factor calculations and possible activated twin systems 
that may be present during an indentation experiment, 
twinning is a shear-activated deformation mechanism 
and takes place via the motion of twinning dislocations. 
Hence, possible partial dislocations for a given structure 
and shear stresses associated with the indenter geometry 
must be considered to successfully predict the twinning 
system that will be activated for a given set of experi- 
mental conditions. 

CONCLUSIONS 

A treatment of twinning using a matrix algebraic 
approach has been given. The twin system activated for 
a given compression or tension experiment can be pre- 
dicted by the use of Schmid factors, just as in the case of 

dislocation slip. These ideas have been applied to 
m-ZrO2 to successfully predict the dominance of {110} 
twinning behavior found in room temperature microin- 
dentation experiments. 
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